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Abstract

A Barker array is a two-dimensional array with elements ±1 such that all out-of-phase aperi-

odic autocorrelation coefficients are 0, 1 or −1. No s×t Barker array with s, t > 1 and (s, t) 6= (2, 2)
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conjecture.
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1 Introduction

In a previous paper [2] we defined binary arrays with Barker structure, a class that contains all

s× t Barker arrays with st > 2, and proved restrictions on s, t for the case st even. In this paper

we present nonexistence results for the case st odd, providing further support for Alquaddoomi

and Scholtz’s conjecture [1].

We shall use the notation of [2].

2 Row and column sum equations

We first obtain equations in the row and column sums of an s × t binary array with Barker

structure, where s, t are odd. Using Lemma 1 and Definition 1 (iii) of [2], we obtain:

Lemma 1 Let A be an s × t binary array with Barker structure where s, t are odd. Let (xi) and

(yj) be the row and column sums of A. Then each xi and yj is an odd integer, and

∑

i

xixi+u =































kt for all u even and u 6= 0

0 for all u odd

st + k(t − 1) for u = 0,

(1)

∑

j

yjyj+v =































ks for all v even and v 6= 0

0 for all v odd

st + k(s − 1) for v = 0,

(2)

where k = 1 or −1 and k ≡ st (mod 4).

We derive all our results from an analysis of equations (1) and (2), although we do not find a

general solution. Throughout, we consider solutions only to (1), combining conditions on s and t

obtained from both equations at the end.

We can deduce from Lemma 1 an expression for the imbalance
∑

i

∑

j aij ≡∑i xi of the array

A.
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Lemma 2 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where k = 1 or −1 and k ≡ st

(mod 4). Then

(

∑

i

xi

)2

=















2st − 1 for st ≡ 1 (mod 4)

1 for st ≡ 3 (mod 4)

Proof

(

∑

i

xi

)2

=
∑

i

x2
i + 2

∑

i

∑

j>i

xixj

=
∑

i

x2
i + 2

∑

i

∑

u>0

xixi+u,

putting j = i + u. Therefore

(

∑

i

xi

)2

=
∑

i

x2
i + 2

s−1
∑

u=1

(

∑

i

xixi+u

)

= st + k(t − 1) + 2kt(s − 1)/2,

on substitution from (1). Hence

(

∑

i

xi

)2

= (k + 1)st − k

=















2st − 1 for st ≡ 1 (mod 4)

1 for st ≡ 3 (mod 4),

using the given value for k. 2

A consequence of Lemma 2 is that 2st − 1 is a square when st ≡ 1 (mod 4), as noted in

Theorem 2 (ii) of [2].

In the case t = 1, the possible values of s are determined by known results on Barker sequences.

Theorem 1 Let s > 1 be an odd integer and let t = 1. Then there exists an s × t binary array

with Barker structure if and only if s = 3, 5, 7, 11 or 13.
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Proof Let A be an s × t binary array with Barker structure. Let (xi) be the row sums of A.

Since t = 1, (xi) is a binary sequence and from (1),

∑

i

xixi+u =































k for all u even and u 6= 0

0 for all u odd

s for u = 0,

(3)

where k = 1 or −1. Therefore (xi) is a Barker sequence of odd length s > 1, and so [3] s = 3, 5,

7, 11 or 13.

The converse is implied by the existence of a Barker sequence with each of these lengths. 2

We henceforth consider s, t > 1. Our results are all based on the observation that any prime

dividing t divides exactly s − 1 of the (xi).

Lemma 3 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where s ≥ 2 and k = 1 or −1. Let

p be a prime dividing t. Then there exists a unique integer 0 ≤ I < s such that

(i) p |xi if and only if i 6= I

(ii) x2
I ≡ −k (mod p).

Proof Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1). Since

p | t, (4)

equations (1) show that

p |
∑

i

xixi+u for all 0 < u < s.

By Lemma 5 of [2], for some 0 ≤ I < s,

p |xi for all i 6= I. (5)

Put u = 0 in (1),

∑

i

x2
i = st + k(t − 1)

≡ −k (mod p),
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from (4). Then from (5),

x2
I ≡ −k (mod p).

This shows that p 6 | xI , because k = 1 or −1. Combining with (5),

p |xi if and only if i 6= I.

Given p and the (xi), it is clear that I is unique. 2

Corollary 1 Let A be an s × t binary array with Barker structure where s, t are odd, s > 1 and

st ≡ 1 (mod 4). Then s ≡ t ≡ 1 (mod 4) and each prime p dividing t satisfies p ≡ 1 (mod 4).

Proof Let (xi) be the row sums of A. From Lemma 1, the (xi) satisfy equations (1), where

k = 1. Let p be a prime dividing t. Then from Lemma 3 (ii),

x2
I ≡ −1 (mod p)

for some 0 ≤ I < s. Now p is odd, since p | t, and so

p ≡ 1 (mod 4). (6)

Since (6) holds for any prime p dividing t, we have t ≡ 1 (mod 4). Then from st ≡ 1 (mod 4)

we also have s ≡ 1 (mod 4). 2

For a given prime p dividing t, the value of I is uniquely determined by the (xi). In some

cases the values of only p, s and t are sufficient to determine or restrict the value of I. This leads

to restrictions on s and t, and is the objective of our analysis.

We first show that I 6= 0, s − 1 for any prime p.

Lemma 4 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where s > 1 is odd, xi 6= 0 for at

least one odd i, and k = 1 or −1. Let p be a prime dividing t and let 0 ≤ I < s be the unique

integer such that p |xi if and only if i 6= I. Then I 6= 0, s − 1.
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Proof The existence of I is given by Lemma 3 (i). Suppose, if possible, that I = 0 or s− 1. By

symmetry we may relabel the (xi), if necessary, so that I = s − 1 and

p |xi if and only if i 6= s − 1. (7)

Since xi 6= 0 for at least one odd i, we may define r to be the largest integer for which

pr |x2j−1 for all 1 ≤ j ≤ (s − 1)/2. (8)

From (7), r ≥ 1. Now for any 1 ≤ j ≤ (s − 1)/2, put u = s − 2j in (1) to obtain

2j−2
∑

i=0

xixi+s−2j + x2j−1xs−1 = 0. (9)

Since s is odd, exactly one of i, i+ s−2j is even and the other is odd, for all i. Furthermore from

(7),

p |xi for all even i 6= s − 1

while from (8),

pr |xi for all odd i.

Therefore pr+1 | ∑2j−2
i=0 xixi+s−2j and then from (9),

pr+1 |x2j−1xs−1.

Now p is prime and by (7), p 6 | xs−1, so we conclude that

pr+1 |x2j−1 for all 1 ≤ j ≤ (s − 1)/2.

This contradicts the maximality of r. 2

We next fix the parity of I.

Lemma 5 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where s > 1 is odd, xi is odd for all

i, and k = 1 or −1. Let p be a prime dividing t and let 0 ≤ I < s be the unique integer such that

p |xi if and only if i 6= I. Then I ≡ (s − 1)/2 (mod 2).
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Proof Summing equations (1) over all odd values of u,

∑

v≥0

∑

i

xixi+2v+1 = 0.

Straightforward manipulation leads to

∑

i

x2i

∑

j

x2j+1 = 0.

Therefore either
∑

i x2i = 0 or
∑

j x2j+1 = 0.

Suppose firstly that
∑

i x2i = 0. Then I is odd, since p |x2i for all 2i 6= I. Also
∑

i x2i is the

sum of exactly (s + 1)/2 non-zero terms, each of which by hypothesis is odd, and so (s + 1)/2 ≡ 0

(mod 2). Therefore

I is odd and (s + 1)/2 ≡ 0 (mod 2). (10)

If instead we suppose that
∑

j x2j+1 = 0 then, by similar reasoning,

I is even and (s − 1)/2 ≡ 0 (mod 2). (11)

We combine (10) and (11) as

I ≡ (s − 1)/2 (mod 2).

2

We now prove two lemmas constraining the (xi), given the value of I.

Lemma 6 Let s, (xi : 0 ≤ i < s) be integers and let p be a prime such that p2 | ∑i xixi+u for all

0 < u < s. Let 0 ≤ I < s/2 be an integer such that p |xi if and only if i 6= I. Then p2 |xj for all

2I < j < s.

Proof Let j satisfy

2I < j < s. (12)

Put u = j − I so that

p2 |
∑

i

xixi+j−I . (13)
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Now

p |xi for all i 6= I (14)

and so p2 divides each product xixi+j−I in (13) unless i = I or i + j − I = I. But from (12),

i + j − I > I and so p2 divides each product xixi+j−I in (13) except xIxj . Therefore

p2 |xIxj .

But p 6 | xI by (14), and so p2 |xj . 2

Lemma 7 Let s, (xi : 0 ≤ i < s) be integers and let p be a prime such that p2 |
∑

i xixi+u for all

0 < u < s. Let 0 ≤ I < s be an integer such that p |xi if and only if i 6= I.

(i) Suppose that p ||xj for some 0 ≤ j < s. Then 0 ≤ 2I − j < s and p ||x2I−j .

(ii) Let j satisfy 0 ≤ j < s and 0 ≤ 2I − j < s. Then p2 |xj if and only if p2 |x2I−j.

Proof

(i) Let p ||xj for some 0 ≤ j < s. By a similar argument to that used in the proof of Lemma 6,

to avoid the false conclusion p2 |xj we require that i + j − I = I has a solution for some

0 ≤ i < s. Consequently 0 ≤ 2I − j < s and

p2 |xj + x2I−j .

Then p ||xj if and only if p ||x2I−j .

(ii) Let j satisfy 0 ≤ j < s and 0 ≤ 2I − j < s. Then similar reasoning shows that

p2 |xj + x2I−j ,

from which p2 |xj if and only if p2 |x2I−j .

2
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The equation x0xs−1 = ±t, obtained by putting u = s − 1 in (1), is of particular importance.

Given a prime p dividing t, we shall often be able to obtain information about the (xi) from the

distribution of powers of p between x0 and xs−1.

Definition Let p be a prime and x, y be integers where x ≥ 0. Let px | y and px+1 6 | y. Then px

is said to strictly divide y, written px || y.

Lemma 8 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where s > 1 is odd, xi 6= 0 for at

least one odd i, and k = 1 or −1. Let p be a prime such that pα || t for some integer α ≥ 1. Then

α ≥ 2 and pγ ||x0, pα−γ ||xs−1 for some 0 < γ < α.

Proof Put u = s − 1 in (1),

x0xs−1 = ±t. (15)

Since pα || t, we then have pγ ||x0, pα−γ ||xs−1 for some 0 ≤ γ ≤ α. By Lemma 4, p |x0, xs−1.

Therefore 0 < γ < α and, from (15), p2 | t. 2

Corollary 2 Let A be an s × t binary array with Barker structure where s, t are odd and s > 1.

Then each prime p dividing t satisfies p2 | t.

Proof Let (xi) be the row sums of A. From Lemma 1, the (xi : 0 ≤ i < s) are odd integers

satisfying equations (1), where k = 1 or −1. Let p be a prime dividing t. Then p2 | t by Lemma 8.

2

3 The case γ = 1

In this section we consider solutions to equations (1) for which p ||x0 and pα−1 ||xs−1, where p is

a prime. The value of I is then determined by s and α, which in turn gives restrictions on s in

terms of α.
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Lemma 9 Let α ≥ 2 and s, (xi : 0 ≤ i < s) be integers and let p be a prime such that

pα |
∑

i

xixi+u for all 0 < u < s, (16)

p || x0, (17)

pα−1 || xs−1. (18)

Let 0 ≤ I < s be an integer such that

p |xi if and only if i 6= I. (19)

If α = 2 then I = (s − 1)/2. If α > 2 then for all 1 ≤ β ≤ α − 2,

(β + 1)I < s − 1, (20)

pα−β | xs−1−j for all 0 ≤ j < βI, (21)

pα−β−1 || xs−1−βI . (22)

Proof Since α ≥ 2, apply Lemma 7 (i) with j = 0 to give

2I < s, (23)

p || x2I . (24)

We show, by induction on j, that

pα−1 |xs−1−j for all 0 ≤ j < I. (25)

The case j = 0 is given by (18). Assume that for some

1 ≤ j < I, (26)

pα−1 |xs−1−k for all 0 ≤ k < j. (27)

Put u = s − 1 − j in (16),

pα | (x0xs−1−j +

j
∑

i=1

xixi+s−1−j). (28)
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Now by (26), j < I and so by (19), p |xi for all 1 ≤ i ≤ j. Furthermore by (27), pα−1 |xi+s−1−j

for all 1 ≤ i ≤ j. Therefore pα | ∑j
i=1 xixi+s−1−j and so by (28),

pα |x0xs−1−j .

Using (17) we conclude that pα−1 |xs−1−j , completing the induction on j and proving (25).

Put u = s − 1 − I in (16),

pα | (x0xs−1−I +

I−1
∑

i=1

xixi+s−1−I + xIxs−1). (29)

From (19) and (25), pα | ∑I−1
i=1 xixi+s−1−I . Therefore from (29),

pα | (x0xs−1−I + xIxs−1). (30)

From (19), p 6 | xI and so by (18), pα−1 ||xIxs−1. Therefore from (30),

pα−1 ||x0xs−1−I . (31)

In the case α = 2 we conclude from (17) and (31) that p 6 | xs−1−I and then from (19), s−1−I = I

or equivalently I = (s − 1)/2, as required. For the rest of the proof take α > 2. Then (17) and

(31) imply that

pα−2 ||xs−1−I , (32)

and, since α > 2 and p 6 | xI , we deduce s − 1 − I 6= I. Combine this with (23) to give

2I < s − 1. (33)

We now prove (20)—(22) for all 1 ≤ β ≤ α− 2 by induction on β. The case β = 1 is given by

(33), (25) and (32) respectively. Assume that for some

2 ≤ β ≤ α − 2, (34)

(20)—(22) hold for β − 1, so that

βI < s − 1, (35)
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pα−β+1 | xs−1−j for all 0 ≤ j < (β − 1)I, (36)

pα−β || xs−1−(β−1)I . (37)

Then to complete the induction on β we must prove the following:

(β + 1)I < s − 1, (38)

pα−β | xs−1−j for all 0 ≤ j < βI, (39)

pα−β−1 || xs−1−βI . (40)

We first prove (38). From (36) and (37),

pα−β |xs−1−j for all 0 ≤ j ≤ (β − 1)I. (41)

By (34), α − β ≥ 2 and so from (41),

p2 |xs−1−j for all 0 ≤ j ≤ (β − 1)I.

Comparison with (24) shows that

2I < s − 1 − (β − 1)I,

which is equivalent to (38).

We next prove (39). From (36), it is sufficient to establish

pα−β |xs−1−j for all (β − 1)I ≤ j < βI, (42)

which we prove by induction on j. The case j = (β − 1)I is given by (37). Assume that for some

(β − 1)I + 1 ≤ j < βI, (43)

pα−β |xs−1−k for all (β − 1)I ≤ k < j. (44)

Put u = s − 1 − j in (16),

pα |
∑

i

xixi+s−1−j . (45)

11



By (34), β ≥ 2 and so

α − β + 1 ≤ α − 1. (46)

Therefore from (45),

pα−β+1 |
∑

i

xixi+s−1−j . (47)

Now by (43), j ≥ (β − 1)I + 1 and by (34), β ≥ 2, so

j ≥ I + 1. (48)

We can therefore write (47) in the form

pα−β+1 | (x0xs−1−j +
∑

1≤i<I,I<i≤j

xixi+s−1−j + xIxI+s−1−j). (49)

By (41) and (44),

pα−β |xi+s−1−j for all 1 ≤ i ≤ j.

Together with (19), this implies

pα−β+1 |
∑

1≤i<I,I<i≤j

xixi+s−1−j

and so from (49),

pα−β+1 | (x0xs−1−j + xIxI+s−1−j). (50)

By (48), j ≥ I + 1 and by (43), j < βI and so by (36), pα−β+1 |xI+s−1−j . Therefore from (50),

pα−β+1 |x0xs−1−j .

From (17) we conclude that

pα−β |xs−1−j ,

completing the induction on j and proving (42), and hence (39).

We lastly prove (40). Put u = s − 1 − βI in (16) and use (46) to show that

pα−β+1 | (x0xs−1−βI +
∑

1≤i<I,I<i≤βI

xixi+s−1−βI + xIxs−1−(β−1)I). (51)
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By (39), pα−β |xi+s−1−βI for all 1 ≤ i ≤ βI. Together with (19), this implies

pα−β+1 |
∑

1≤i<I,I<i≤βI

xixi+s−1−βI ,

and so from (51),

pα−β+1 | (x0xs−1−βI + xIxs−1−(β−1)I). (52)

From (19), p 6 | xI and so by (37), pα−β ||xIxs−1−(β−1)I . Therefore from (52),

pα−β ||x0xs−1−βI .

We conclude from (17) that

pα−β−1 ||xs−1−βI ,

which is (40).

This completes the induction on β, proving (20)—(22) for all 1 ≤ β ≤ α − 2. 2

We now use Lemma 9 to prove the intended result of this section.

Theorem 2 Let s, t, (xi : 0 ≤ i < s) be integers satisfying (1), where s > 1 is odd and k = 1 or

−1. Let p be a prime such that pα || t for some integer α ≥ 2, and p ||x0. Then

(i) s ≡ 1 (mod α)

(ii) if xi is odd for all i then (s − 1)(α − 2) ≡ 0 (mod 4α)

(iii) I = (s − 1)/α is the unique integer such that p |xi if and only if i 6= I

(iv) for all 2 ≤ r ≤ α,

pr | xj for all j > rI, (53)

pr−1 || xrI . (54)

Proof By Lemma 3 (i), let I be the unique integer such that p |xi if and only if i 6= I. Take

u = s − 1 in (1) to give x0xs−1 = ±t. Then pα || t and p ||x0 imply

pα−1 ||xs−1, (55)
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and we may apply Lemma 9.

We first prove that

I = (s − 1)/α. (56)

If α = 2 then (56) is given directly by Lemma 9. Suppose that α > 2. Apply Lemma 9, taking

β = 1 in (20) to give

2I < s − 1 (57)

and taking β = α − 2 in (21) and (22) to give

p2 | xs−1−j for all 0 ≤ j < (α − 2)I, (58)

p || xs−1−(α−2)I . (59)

From (57) and Lemma 6,

p2 |xj for all 2I < j < s. (60)

Put j = 0 in Lemma 7 (i) to show

p ||x2I . (61)

Comparing (58) and (59) with (60) and (61), we conclude that

2I = s − 1 − (α − 2)I,

which is equivalent to I = (s − 1)/α. We have therefore proved (56) for α ≥ 2.

Now I is an integer and so from (56), s ≡ 1 (mod α). If xi is odd for all i then substitution

of (56) in Lemma 5 gives

(s − 1)/α ≡ (s − 1)/2 (mod 2),

or equivalently (s − 1)(α − 2) ≡ 0 (mod 4α).

Finally apply Lemma 9 to show that (21) and (22) hold for α > 2 and for all 1 ≤ β ≤ α − 2.

(21) and (22) also hold for β = 0, since then (21) is vacuous and (22) is given by (55). Combining

14



ranges, (21) and (22) hold for

α ≥ 2 and for all 0 ≤ β ≤ α − 2.

The substitution r = α− β, together with (56), then shows that (53) and (54) hold for α ≥ 2 and

for all 2 ≤ r ≤ α. 2

4 Nonexistence results for small α

In this section we use the results of Sections 2 and 3 to obtain nonexistence results for small values

of αj , where t =
∏

j p
αj

j for distinct primes pj . We express the nonexistence results in the form

of restrictions on s and t.

In each case we state a theorem in terms of integers (xi) and then a corollary in terms of

an s × t binary array with Barker structure. Each corollary follows directly from the preceding

theorem by letting (xi) be the row sums of the array and using Lemma 1, as in the proof of

Corollary 2.

We already know from Corollary 2 that αj ≥ 2 for each j. The next case of interest is αj = 2

for all j. We first explore the case α = 2 for some prime p.

Lemma 10 Let s, t, (xi : 0 ≤ i < s) be integers satisfying equations (1), where s > 1 is odd,

xi 6= 0 for at least one odd i, and k = 1 or −1. Let p be a prime such that

p2 || t. (62)

Then p ||x0, xs−1 and

p | xi if and only if i 6= (s − 1)/2,

p2 | (xj + xs−1−j) for all 0 ≤ j < (s − 1)/2.

Proof By Lemma 8, p ||x0, xs−1. Then by Theorem 2 (iii),

p |xi if and only if i 6= (s − 1)/2. (63)
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We now show that

p2 | (xj + xs−1−j) for all 0 ≤ j < (s − 1)/2. (64)

For any 0 ≤ j < (s − 1)/2, put u = (s − 1)/2 − j in (1) and use (62) to show that

p2 |
∑

i

xixi+(s−1)/2−j . (65)

From (63), p2 |xixi+(s−1)/2−j unless either i = (s− 1)/2 or i + (s− 1)/2− j = (s− 1)/2, so from

(65), p2 |x(s−1)/2(xj + xs−1−j). By (63), p 6 | x(s−1)/2 and so p2 | (xj + xs−1−j), proving (64). 2

Subject to the condition s > 3, we now show that αj > 2 for some j and use Theorem 2 to

restrict s when αj = 3 for some j. If s = 3, equations (1) have a solution in odd integers (xi)

with k = −1, namely t = r2 for some odd r and (x0, x1, x2) = (r,±1,−r).

Theorem 3 Let s, t, (xi : 0 ≤ i < s) be integers satisfying equations (1), where s > 3 and t > 1

are odd, xi 6= 0 for all i, and k = 1 or −1. Then

(i) there exists a prime p such that p3 | t

(ii) if q3 || t for some prime q and xi is odd for all i then s ≡ 1 (mod 12)

Proof Since t > 1 we may write t =
∏

j p
αj

j , where the (pj) are distinct primes and αj ≥ 1 for

all j. By Lemma 8, αj ≥ 2 for all j. We seek a contradiction by supposing that αj = 2 for all j,

so that

t =
∏

j

p2
j . (66)

Applying Lemma 10,

pj || x0, xs−1 for all j, (67)

pj | xi if and only if i 6= (s − 1)/2, for all j, (68)

p2
j | (xi + xs−1−i) for all 0 ≤ i < (s − 1)/2, for all j. (69)

Using (66), we deduce from (68) and (69) that

√
t | xi for all i 6= (s − 1)/2, (70)
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t | (xi + xs−1−i) for all 0 ≤ i < (s − 1)/2. (71)

Put u = s − 1 in (1) to obtain

x0xs−1 = ±t. (72)

Take i = 0, s − 1 in (70) and compare with (72) to show that

x0 = ±xs−1. (73)

For any j, take i = 0 in (69),

p2
j | (x0 + xs−1). (74)

Suppose, if possible, that x0 = xs−1. Then from (74), p2
j | 2x0 and so, since pj is odd, p2

j |x0. This

contradicts (67) and so x0 6= xs−1. From (73),

x0 = −xs−1. (75)

Put u = s − 2 in (1) and substitute from (75),

x0(xs−2 − x1) = 0.

By hypothesis, x0 6= 0 and so

x1 = xs−2. (76)

Take i = 1 in (71) and substitute from (76) to give t | 2x1. Then since t is odd, t |x1, and so from

(76),

t |x1, xs−2. (77)

We now force a contradiction by bounding
∑

i x2
i from below. By hypothesis, 1 < s − 2 and

so x1, xs−2 are not the same variable. Therefore we may write

∑

i

x2
i = x2

1 + x2
s−2 + x2

(s−1)/2 +
∑

i6=1,s−2,(s−1)/2

x2
i .
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Since xi 6= 0 for all i, from (70) and (77) we then have

∑

i

x2
i ≥ t2 + t2 + 1 + (s − 3)t

Comparing this bound with the value for the left side obtained by putting u = 0 in (1),

st + t − 1 ≥ 2t2 + 1 + (s − 3)t,

which is equivalent to (t − 1)2 ≤ 0. This contradicts t > 1 and so proves (i).

Suppose now that q3 || t for some prime q and xi is odd for all i. From Lemma 8, either q ||x0

or q ||xs−1. We may therefore apply Theorem 2 (ii), reversing the order of the (xi) if necessary,

to show that s − 1 ≡ 0 (mod 12), proving (ii). 2

Corollary 3 Let A be an s× t binary array with Barker structure where s > 3 and t > 1 are odd.

Then there exists a prime p such that p3 | t. If q3 || t for some prime q then s ≡ 1 (mod 12).

Given that αj ≥ 2 for all j and αk > 2 for some k, we next consider the case αk = 3 for

exactly one k and αj = 2 for all j 6= k.

Theorem 4 Let s, t, (xi : 0 ≤ i < s) be integers satisfying equations (1), where s > 3 and t > 1

are odd, xi is odd for all i, and k = 1 or −1. Let t = q3
∏

j p
αj

j , where q, (pj) are distinct primes

and αj ≥ 1 for all j. Then αj > 2 for some j.

Proof By Lemma 8, αj ≥ 2 for all j. Suppose, for a contradiction, that αj = 2 for all j, so that

t = q3
∏

j

p2
j . (78)

By Lemma 10,

pj |xi for all i 6= (s − 1)/2, for all j. (79)

By Lemma 8, either q ||x0 or q ||xs−1. We may assume, by reversing the order of the xi if

necessary, that q ||x0. Then by Theorem 2 (iii) and (iv),

q2 | xi for all 2(s − 1)/3 < i ≤ s − 1,

q | xi for all 0 ≤ i ≤ 2(s − 1)/3, i 6= (s − 1)/3.
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Together with (79), this implies that

q2
∏

j

pj | xi for all 2(s − 1)/3 < i ≤ s − 1,

q
∏

j

pj | xi for all 0 ≤ i ≤ 2(s − 1)/3, i 6= (s − 1)/3, (s − 1)/2,

∏

j

pj | x(s−1)/3.

Since xi 6= 0 for all i, we can therefore bound
∑

i x2
i from below,

∑

i

x2
i ≥ (s − 1)q4

3

∏

j

p2
j +

(

2(s − 1)

3
− 2

)

q2
∏

j

p2
j +

∏

j

p2
j .

Comparing this bound with the value for the left hand side obtained by putting u = 0 in (1), and

making the substitution
∏

j p2
j = t/q3 from (78),

s + 1 ≥ (s − 1)q

3
+

2s− 8

3q
+

1

q3
.

Rearrangement gives

s ≤ q4 + 3q3 + 8q2 − 3

q2(q − 1)(q − 2)
,

which can be written as

s ≤ 1 + 3f(q) (80)

where

f(q) =
2q3 + 2q2 − 1

q2(q − 1)(q − 2)
.

It is easy to check that

f(q) − f(q + 1) =
2q4 + 12q3 + 18q2 + 4q − 1

(q + 1)2q2(q − 1)(q − 2)

> 0 for all q ≥ 3. (81)

Now q is an odd prime and so q ≥ 3. Therefore, from (80) and (81),

s ≤ 1 + 3f(3) = 77/6 < 13. (82)

But by Theorem 3 (ii), s ≡ 1 (mod 12), and by hypothesis s > 3. This contradicts (82),

completing the proof. 2
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Corollary 4 Let A be an s× t binary array with Barker structure where s > 3 and t > 1 are odd.

Let t = q3
∏

j p
αj

j , where q, (pj) are distinct primes and αj ≥ 1 for all j. Then αj > 2 for some j.

The final case we shall consider is αj = 2 or 4 for all j. We first explore the case α = 4 for

some prime p. By Lemma 8, pγ ||x0 where γ = 1, 2 or 3. The values γ = 1 or 3 are covered by

Theorem 2, leaving only the value γ = 2 to deal with.

Lemma 11 Let s, (xi : 0 ≤ i < s) be integers and let p be an odd prime such that

p4 |
∑

i

xixi+u for all 0 < u < s, (83)

p2 || x0, (84)

p2 || xs−1. (85)

Let 0 ≤ I < s be an integer such that

p |xi if and only if i 6= I. (86)

Then

I = (s − 1)/2, (87)

p2 | xj , xs−1−j for all 0 ≤ j ≤ ⌊(s − 3)/4⌋. (88)

If also

x0 = −xs−1 (89)

then

p2 |xj for all j 6= (s − 1)/2. (90)

Proof We may assume, by reversing the order of the (xi) if necessary, that

I ≤ (s − 1)/2. (91)

We show, by induction on j, that

p2 |xj , xs−1−j for all 0 ≤ j ≤ ⌊(I − 1)/2⌋. (92)
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The case j = 0 is given by (84) and (85). Assume that for some

1 ≤ j ≤ ⌊(I − 1)/2⌋, (93)

p2 |xk, xs−1−k for all 0 ≤ k < j. (94)

Put u = s − 1 − 2j in (83), showing that

p3 | (
j−1
∑

i=0

xixi+s−1−2j + xjxs−1−j +

2j
∑

i=j+1

xixi+s−1−2j) (95)

By (94), p2 |xi for all 0 ≤ i ≤ j − 1. By (91) and (93), s− 1− 2j > I and so by (86), p |xi+s−1−2j

for all 0 ≤ i ≤ j − 1. Therefore p3 | ∑j−1
i=0 xixi+s−1−2j . Similarly p3 | ∑2j

i=j+1 xixi+s−1−2j . Then

from (95),

p3 |xjxs−1−j

and so

either p2 |xj or p2 |xs−1−j . (96)

Now take u = s − 1 − j in (83),

p4 | (x0xs−1−j +

j−1
∑

i=1

xixi+s−1−j + xjxs−1). (97)

By (94), p2 |xi, xi+s−1−j for all 1 ≤ i ≤ j − 1 and so p4 | ∑j−1
i=1 xixi+s−1−j . Therefore from (97),

p4 | (x0xs−1−j + xjxs−1).

Then from (84) and (85),

p2 |xj if and only if p2 |xs−1−j .

Therefore, using (96),

p2 |xj , xs−1−j ,

completing the induction on j and proving (92).

Put u = s − 1 − I in (83) to show that

p3 | (
I−1
∑

i=0

xixi+s−1−I + xIxs−1). (98)
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We next prove (87), considering separately the cases I even and I odd.

Suppose firstly that I is odd, so that (92) and (98) become

p2 | xj , xs−1−j for all 0 ≤ j ≤ (I − 1)/2, (99)

p3 | (

(I−1)/2
∑

i=0

xixi+s−1−I +

I−1
∑

i=(I+1)/2

xixi+s−1−I + xIxs−1). (100)

From (99), p2 |xi+s−1−I for all (I + 1)/2 ≤ i ≤ I − 1 and so by (86), p3 | ∑I−1
i=(I+1)/2 xixi+s−1−I .

Therefore from (100),

p3 | (
(I−1)/2
∑

i=0

xixi+s−1−I + xIxs−1). (101)

From (86), p 6 | xI and so by (85), p2 ||xIxs−1. Therefore from (101),

p2 ||
(I−1)/2
∑

i=0

xixi+s−1−I . (102)

Now from (99), p2 |xi for all 0 ≤ i ≤ (I − 1)/2. Suppose, if possible, that s− 1 − I > I. Then by

(86), p |xi+s−1−I for all 0 ≤ i ≤ (I − 1)/2 and so p3 | ∑(I−1)/2
i=0 xixi+s−1−I , contradicting (102).

Therefore s − 1 − I ≤ I, which combines with (91) to give I = (s − 1)/2.

Suppose instead that I is even, so that (92) and (98) become

p2 | xj , xs−1−j for all 0 ≤ j ≤ I/2 − 1, (103)

p3 | (

I/2−1
∑

i=0

xixi+s−1−I + xI/2xs−1−I/2 +

I−1
∑

i=I/2+1

xixi+s−1−I + xIxs−1). (104)

Suppose, if possible, that

s − 1 − I > I. (105)

From (103), p2 |xi for all 0 ≤ i ≤ I/2 − 1 and p2 |xi+s−1−I for all I/2 + 1 ≤ i ≤ I − 1. Hence by

(86) and (105), p3 | (∑I/2−1
i=0 xixi+s−1−I +

∑I−1
i=I/2+1 xixi+s−1−I ), and so from (104),

p3 | (xI/2xs−1−I/2 + xIxs−1).

As before, p2 ||xIxs−1 and therefore

p2 ||xI/2xs−1−I/2.
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It follows from (86) and (91) that

p || xI/2, (106)

p || xs−1−I/2. (107)

Apply Lemma 7 (ii) for all 0 ≤ j < I/2 so that from (103), p2 |xj for all 3I/2 < j ≤ 2I. Apply

Lemma 6 to show that p2 |xj for all 2I < j < s. Combine to give

p2 |xj for all 3I/2 < j < s. (108)

Apply Lemma 7 (i) with j = I/2 so that from (106),

p ||x3I/2. (109)

Comparing (103) and (107) with (108) and (109), we conclude that

s − 1 − I/2 = 3I/2,

contradicting (105). Therefore s − 1 − I ≤ I, which combines with (91) to give (87).

We therefore have I = (s − 1)/2 regardless of whether I is even or odd, and the form (88) is

obtained by substituting for I in (92).

Suppose finally that (89) holds. By (87), the form (90) is equivalent to

p2 |xj , xs−1−j for all 0 ≤ j < I, (110)

which we prove by induction on j. The case j = 0 is given by (88). Assume that for some

0 < j < I, (111)

p2 |xk, xs−1−k for all 0 ≤ k < j. (112)

Put u = s − 1 − j in (83),

p4 | (x0xs−1−j +

j−1
∑

i=1

xixi+s−1−j + xjxs−1). (113)

23



By (112), p4 | ∑j−1
i=1 xixi+s−1−j and then substitution from (89) in (113) gives

p4 |xs−1(xj − xs−1−j).

Then from (85),

p2 | (xj − xs−1−j). (114)

By (111), I − j > 0 so we may take u = I − j in (83) and use (87) to show that

p2 | (
∑

i6=j,I

xixi+I−j + xjxI + xIxs−1−j).

From (86), p2 |
∑

i6=j,I xixi+I−j and so

p2 |xI(xj + xs−1−j).

But p 6 | xI by (86), and therefore

p2 | (xj + xs−1−j). (115)

Summing (114) and (115), p2 | 2xj and, since p is odd, p2 |xj . Therefore from (115),

p2 |xj , xs−1−j ,

completing the induction on j and proving (110) and therefore (90). 2

We can now treat the case αj = 2 or 4 for all j.

Theorem 5 Let s, t, (xi : 0 ≤ i < s) be integers satisfying equations (1), where s > 3 and t > 1

are odd, xi 6= 0 for all i, and k = 1 or −1. Let

t =





∏

j

p2
j





(

∏

k

q4
k

)

, (116)

where the (pj , qk) are distinct primes. Then s ≡ 1 (mod 4).

Proof Suppose, for a contradiction, that

s ≡ 3 (mod 4). (117)
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Applying Lemma 10,

pj || x0, xs−1 for all j, (118)

pj | xi if and only if i 6= (s − 1)/2, for all j. (119)

By Lemma 8,

qγk

k ||x0, q4−γk

k ||xs−1 for all k, (120)

where each γk = 1, 2 or 3. By Theorem 2 (i), if γk = 1 or 3 for any k then s ≡ 1 (mod 4),

contradicting (117), and so from (120),

q2
k ||x0, xs−1 for all k. (121)

Then by Lemmas 3 and 11,

qk |xi if and only if i 6= (s − 1)/2, for all k. (122)

Using (116), we deduce from (118) and (121) that

√
t |x0, xs−1. (123)

Put u = s − 1 in (1), giving x0xs−1 = ±t. Then (123) implies that

x0 = ±xs−1. (124)

Now from (116) and Theorem 3 (i), there exists some k such that q4
k | t. For any such k, take

u = (s − 1)/2 in (1) and use (117) to write

q3
k | (x0x(s−1)/2 +

(s−3)/4
∑

i=1

xixi+(s−1)/2 +

(s−3)/2
∑

i=(s+1)/4

xixi+(s−1)/2 + x(s−1)/2xs−1). (125)

Applying Lemma 11,

q2
k |xi, xs−1−i for all 0 ≤ i ≤ (s − 3)/4,

which, together with (122), implies that q3
k | (
∑(s−3)/4

i=1 xixi+(s−1)/2 +
∑(s−3)/2

i=(s+1)/4 xixi+(s−1)/2).

Therefore from (125),

q3
k |x(s−1)/2(x0 + xs−1),
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and since, by (122), qk 6 | x(s−1)/2,

q3
k | (x0 + xs−1). (126)

Suppose, if possible, that x0 = xs−1. Then from (126), q3
k | 2x0 and so, since qk is odd, q3

k |x0.

This contradicts (121) and so x0 6= xs−1. From (124),

x0 = −xs−1. (127)

Now we can apply Lemma 11 to obtain

q2
k |xi for all i 6= (s − 1)/2, for all k. (128)

Together with (116) and (119), this gives

√
t |xi for all i 6= (s − 1)/2. (129)

Take u = s − 2 in (1) and substitute from (127),

x0(xs−2 − x1) = 0.

Since x0 6= 0,

x1 = xs−2. (130)

Next take u = (s − 3)/2 in (1),

t | (x1x(s−1)/2 +
∑

i6=1,(s−1)/2

xixi+(s−3)/2 + x(s−1)/2xs−2). (131)

Now from (116), p2
j | t for all j and so (119) and (131) imply that p2

j | (x1 + xs−2) for all j. Then

(130) gives p2
j |x1, xs−2 for all j. Similarly q4

k | t for all k and so (128), (130) and (131) imply that

q4
k |x1, xs−2. Combining and using (116),

t |x1, xs−2. (132)

We now proceed as in the proof of Theorem 3 (i), using (129) and (132) to show that (t−1)2 ≤ 0,

contradicting t > 1. Therefore we conclude that (117) is false and hence s ≡ 1 (mod 4). 2
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Corollary 5 Let A be an s × t binary array with Barker structure where s > 3 and t > 1 are

odd. Let t =
∏

j p
αj

j , where the (pj) are distinct primes and αj = 2 or 4 for all j. Then st ≡ 1

(mod 4).

Proof By Theorem 5, s ≡ 1 (mod 4). Since t is the product of even powers of primes, t ≡ 1

(mod 4). Therefore st ≡ 1 (mod 4). 2

This completes our analysis for small values of αj .

The nonexistence results in this paper, for s× t binary arrays with Barker structure where s, t

are odd, are all based on equations (1). Using equations (2) as well as (1) we may interchange s

and t in each of our results. In particular we can exclude the case s = 3, t > 1 by Corollary 2.

We conclude this section by summarising the nonexistence results arising from both (1) and (2),

although for clarity we mostly do not repeat results with s and t interchanged.

Theorem 6 Let A = (aij) be an s × t binary array with Barker structure where s, t are odd and

s > 1. If st ≡ 1 (mod 4) then 2st − 1 = (
∑

i

∑

j aij)
2, s ≡ t ≡ 1 (mod 4) and p ≡ 1 (mod 4)

for each prime p dividing s or t. If t = 1 then s = 3, 5, 7, 11 or 13. Otherwise, if t > 1, write

t =
∏

j p
αj

j where the (pj) are distinct primes and αj ≥ 1 for all j. Then

(i) αj ≥ 2 for all j

(ii) αk > 2 for some k

(iii) if αk = 3 for some k then s ≡ 1 (mod 12)

(iv) if αk = 3 for some k then αj > 2 for some j 6= k

(v) if αj = 2 or 4 for all j then st ≡ 1 (mod 4).
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5 Comments

The smallest odd value of st > 13 for which the nonexistence of an s× t binary array with Barker

structure is not determined by Theorem 6 occurs at {s, t} = {35, 36}. The existence of such an

array implies the existence of a (177147, 88573, 44286)-difference set in ZZ 243 × ZZ 729 [2].

In our opinion, the apparent scarcity of solutions to the necessary equations, both in the row

and column sums, provides good reason to doubt the existence of an s × t binary array with

Barker structure where st > 13 is odd.
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