Barker arrays II - odd number of elements

Jonathan Jedwab
Sheelagh Lloyd
Miranda Mowbray
Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 6QZ, U.K.

Abstract

A Barker array is a two-dimensional array with elements ± 1 such that all out-of-phase aperiodic autocorrelation coefficients are 0,1 or -1 . No $s \times t$ Barker array with $s, t>1$ and $(s, t) \neq(2,2)$ is known and it is conjectured that none exists. Nonexistence results for a class of arrays that includes Barker arrays have been previously given, in the case st even. We prove nonexistence results for this class of arrays in the case st odd, providing further support for the Barker array conjecture.

Keywords Barker array, aperiodic autocorrelation, binary array, nonexistence.

AMS Subject Classification Primary 05B20, secondary 05B10

Abbreviated title Barker Arrays II

1 Introduction

In a previous paper [2] we defined binary arrays with Barker structure, a class that contains all $s \times t$ Barker arrays with $s t>2$, and proved restrictions on s, t for the case $s t$ even. In this paper we present nonexistence results for the case st odd, providing further support for Alquaddoomi and Scholtz's conjecture [1].

We shall use the notation of [2].

2 Row and column sum equations

We first obtain equations in the row and column sums of an $s \times t$ binary array with Barker structure, where s, t are odd. Using Lemma 1 and Definition 1 (iii) of [2], we obtain:

Lemma 1 Let A be an $s \times t$ binary array with Barker structure where s, t are odd. Let $\left(x_{i}\right)$ and $\left(y_{j}\right)$ be the row and column sums of A. Then each x_{i} and y_{j} is an odd integer, and

$$
\begin{align*}
& \sum_{i} x_{i} x_{i+u}= \begin{cases}k t & \text { for all } u \text { even and } u \neq 0 \\
0 & \text { for all } u \text { odd } \\
s t+k(t-1) & \text { for } u=0,\end{cases} \tag{1}\\
& \sum_{j} y_{j} y_{j+v}= \begin{cases}k s & \text { for all } v \text { even and } v \neq 0 \\
0 & \text { for all } v \text { odd }\end{cases} \tag{2}\\
& s t+k(s-1) \\
& \text { for } v=0,
\end{align*}
$$

where $k=1$ or -1 and $k \equiv s t \quad(\bmod 4)$.

We derive all our results from an analysis of equations (1) and (2), although we do not find a general solution. Throughout, we consider solutions only to (1), combining conditions on s and t obtained from both equations at the end.

We can deduce from Lemma 1 an expression for the imbalance $\sum_{i} \sum_{j} a_{i j} \equiv \sum_{i} x_{i}$ of the array A.

Lemma 2 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $k=1$ or -1 and $k \equiv$ st $(\bmod 4)$. Then

$$
\left(\sum_{i} x_{i}\right)^{2}=\left\{\begin{array}{lll}
2 s t-1 & \text { for } s t \equiv 1 & (\bmod 4) \\
1 & \text { for } s t \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Proof

$$
\begin{aligned}
\left(\sum_{i} x_{i}\right)^{2} & =\sum_{i} x_{i}^{2}+2 \sum_{i} \sum_{j>i} x_{i} x_{j} \\
& =\sum_{i} x_{i}^{2}+2 \sum_{i} \sum_{u>0} x_{i} x_{i+u}
\end{aligned}
$$

putting $j=i+u$. Therefore

$$
\begin{aligned}
\left(\sum_{i} x_{i}\right)^{2} & =\sum_{i} x_{i}^{2}+2 \sum_{u=1}^{s-1}\left(\sum_{i} x_{i} x_{i+u}\right) \\
& =s t+k(t-1)+2 k t(s-1) / 2
\end{aligned}
$$

on substitution from (1). Hence

$$
\begin{aligned}
\left(\sum_{i} x_{i}\right)^{2} & =(k+1) s t-k \\
& =\left\{\begin{array}{lll}
2 s t-1 & \text { for } s t \equiv 1 & (\bmod 4) \\
1 & \text { for } s t \equiv 3 & (\bmod 4)
\end{array}\right.
\end{aligned}
$$

using the given value for k.
A consequence of Lemma 2 is that $2 s t-1$ is a square when $s t \equiv 1(\bmod 4)$, as noted in Theorem 2 (ii) of [2].

In the case $t=1$, the possible values of s are determined by known results on Barker sequences.

Theorem 1 Let $s>1$ be an odd integer and let $t=1$. Then there exists an $s \times t$ binary array with Barker structure if and only if $s=3,5,7,11$ or 13 .

Proof Let A be an $s \times t$ binary array with Barker structure. Let $\left(x_{i}\right)$ be the row sums of A. Since $t=1,\left(x_{i}\right)$ is a binary sequence and from (1),

$$
\sum_{i} x_{i} x_{i+u}= \begin{cases}k & \text { for all } u \text { even and } u \neq 0 \tag{3}\\ 0 & \text { for all } u \text { odd } \\ s & \text { for } u=0\end{cases}
$$

where $k=1$ or -1 . Therefore $\left(x_{i}\right)$ is a Barker sequence of odd length $s>1$, and so $[3] s=3,5$, 7,11 or 13 .

The converse is implied by the existence of a Barker sequence with each of these lengths.
We henceforth consider $s, t>1$. Our results are all based on the observation that any prime dividing t divides exactly $s-1$ of the $\left(x_{i}\right)$.

Lemma 3 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $s \geq 2$ and $k=1$ or -1 . Let p be a prime dividing t. Then there exists a unique integer $0 \leq I<s$ such that
(i) $p \mid x_{i}$ if and only if $i \neq I$
(ii) $x_{I}^{2} \equiv-k \quad(\bmod p)$.

Proof Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1). Since

$$
\begin{equation*}
p \mid t \tag{4}
\end{equation*}
$$

equations (1) show that

$$
p \mid \sum_{i} x_{i} x_{i+u} \text { for all } 0<u<s .
$$

By Lemma 5 of [2], for some $0 \leq I<s$,

$$
\begin{equation*}
p \mid x_{i} \text { for all } i \neq I \tag{5}
\end{equation*}
$$

Put $u=0$ in (1),

$$
\begin{aligned}
\sum_{i} x_{i}^{2} & =s t+k(t-1) \\
& \equiv-k \quad(\bmod p)
\end{aligned}
$$

from (4). Then from (5),

$$
x_{I}^{2} \equiv-k \quad(\bmod p) .
$$

This shows that $p \nmid x_{I}$, because $k=1$ or -1 . Combining with (5),

$$
p \mid x_{i} \text { if and only if } i \neq I
$$

Given p and the $\left(x_{i}\right)$, it is clear that I is unique.

Corollary 1 Let A be an $s \times t$ binary array with Barker structure where s, t are odd, $s>1$ and $s t \equiv 1(\bmod 4)$. Then $s \equiv t \equiv 1 \quad(\bmod 4)$ and each prime p dividing t satisfies $p \equiv 1(\bmod 4)$.

Proof Let $\left(x_{i}\right)$ be the row sums of A. From Lemma 1, the $\left(x_{i}\right)$ satisfy equations (1), where $k=1$. Let p be a prime dividing t. Then from Lemma 3 (ii),

$$
x_{I}^{2} \equiv-1 \quad(\bmod p)
$$

for some $0 \leq I<s$. Now p is odd, since $p \mid t$, and so

$$
\begin{equation*}
p \equiv 1 \quad(\bmod 4) \tag{6}
\end{equation*}
$$

Since (6) holds for any prime p dividing t, we have $t \equiv 1(\bmod 4)$. Then from $s t \equiv 1(\bmod 4)$ we also have $s \equiv 1 \quad(\bmod 4)$.

For a given prime p dividing t, the value of I is uniquely determined by the $\left(x_{i}\right)$. In some cases the values of only p, s and t are sufficient to determine or restrict the value of I. This leads to restrictions on s and t, and is the objective of our analysis.

We first show that $I \neq 0, s-1$ for any prime p.

Lemma 4 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $s>1$ is odd, $x_{i} \neq 0$ for at least one odd i, and $k=1$ or -1 . Let p be a prime dividing t and let $0 \leq I<s$ be the unique integer such that $p \mid x_{i}$ if and only if $i \neq I$. Then $I \neq 0, s-1$.

Proof The existence of I is given by Lemma 3 (i). Suppose, if possible, that $I=0$ or $s-1$. By symmetry we may relabel the $\left(x_{i}\right)$, if necessary, so that $I=s-1$ and

$$
\begin{equation*}
p \mid x_{i} \text { if and only if } i \neq s-1 \tag{7}
\end{equation*}
$$

Since $x_{i} \neq 0$ for at least one odd i, we may define r to be the largest integer for which

$$
\begin{equation*}
p^{r} \mid x_{2 j-1} \text { for all } 1 \leq j \leq(s-1) / 2 \tag{8}
\end{equation*}
$$

From (7), $r \geq 1$. Now for any $1 \leq j \leq(s-1) / 2$, put $u=s-2 j$ in (1) to obtain

$$
\begin{equation*}
\sum_{i=0}^{2 j-2} x_{i} x_{i+s-2 j}+x_{2 j-1} x_{s-1}=0 \tag{9}
\end{equation*}
$$

Since s is odd, exactly one of $i, i+s-2 j$ is even and the other is odd, for all i. Furthermore from (7),

$$
p \mid x_{i} \text { for all even } i \neq s-1
$$

while from (8),

$$
p^{r} \mid x_{i} \text { for all odd } i
$$

Therefore $p^{r+1} \mid \sum_{i=0}^{2 j-2} x_{i} x_{i+s-2 j}$ and then from (9),

$$
p^{r+1} \mid x_{2 j-1} x_{s-1}
$$

Now p is prime and by (7), $p \nmid x_{s-1}$, so we conclude that

$$
p^{r+1} \mid x_{2 j-1} \text { for all } 1 \leq j \leq(s-1) / 2
$$

This contradicts the maximality of r.
We next fix the parity of I.

Lemma 5 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $s>1$ is odd, x_{i} is odd for all i, and $k=1$ or -1 . Let p be a prime dividing t and let $0 \leq I<s$ be the unique integer such that $p \mid x_{i}$ if and only if $i \neq I$. Then $I \equiv(s-1) / 2 \quad(\bmod 2)$.

Proof Summing equations (1) over all odd values of u,

$$
\sum_{v \geq 0} \sum_{i} x_{i} x_{i+2 v+1}=0 .
$$

Straightforward manipulation leads to

$$
\sum_{i} x_{2 i} \sum_{j} x_{2 j+1}=0
$$

Therefore either $\sum_{i} x_{2 i}=0$ or $\sum_{j} x_{2 j+1}=0$.
Suppose firstly that $\sum_{i} x_{2 i}=0$. Then I is odd, since $p \mid x_{2 i}$ for all $2 i \neq I$. Also $\sum_{i} x_{2 i}$ is the sum of exactly $(s+1) / 2$ non-zero terms, each of which by hypothesis is odd, and so $(s+1) / 2 \equiv 0$ $(\bmod 2)$. Therefore

$$
\begin{equation*}
I \text { is odd and }(s+1) / 2 \equiv 0 \quad(\bmod 2) . \tag{10}
\end{equation*}
$$

If instead we suppose that $\sum_{j} x_{2 j+1}=0$ then, by similar reasoning,

$$
\begin{equation*}
I \text { is even and }(s-1) / 2 \equiv 0 \quad(\bmod 2) \tag{11}
\end{equation*}
$$

We combine (10) and (11) as

$$
I \equiv(s-1) / 2 \quad(\bmod 2)
$$

We now prove two lemmas constraining the $\left(x_{i}\right)$, given the value of I.

Lemma 6 Let $s,\left(x_{i}: 0 \leq i<s\right)$ be integers and let p be a prime such that $p^{2} \mid \sum_{i} x_{i} x_{i+u}$ for all $0<u<s$. Let $0 \leq I<s / 2$ be an integer such that $p \mid x_{i}$ if and only if $i \neq I$. Then $p^{2} \mid x_{j}$ for all $2 I<j<s$.

Proof Let j satisfy

$$
\begin{equation*}
2 I<j<s \tag{12}
\end{equation*}
$$

Put $u=j-I$ so that

$$
\begin{equation*}
p^{2} \mid \sum_{i} x_{i} x_{i+j-I} . \tag{13}
\end{equation*}
$$

Now

$$
\begin{equation*}
p \mid x_{i} \text { for all } i \neq I \tag{14}
\end{equation*}
$$

and so p^{2} divides each product $x_{i} x_{i+j-I}$ in (13) unless $i=I$ or $i+j-I=I$. But from (12), $i+j-I>I$ and so p^{2} divides each product $x_{i} x_{i+j-I}$ in (13) except $x_{I} x_{j}$. Therefore

$$
p^{2} \mid x_{I} x_{j}
$$

But $p \nmid x_{I}$ by (14), and so $p^{2} \mid x_{j}$.

Lemma 7 Let $s,\left(x_{i}: 0 \leq i<s\right)$ be integers and let p be a prime such that $p^{2} \mid \sum_{i} x_{i} x_{i+u}$ for all $0<u<s$. Let $0 \leq I<s$ be an integer such that $p \mid x_{i}$ if and only if $i \neq I$.
(i) Suppose that $p \| x_{j}$ for some $0 \leq j<s$. Then $0 \leq 2 I-j<s$ and $p \| x_{2 I-j}$.
(ii) Let j satisfy $0 \leq j<s$ and $0 \leq 2 I-j<s$. Then $p^{2} \mid x_{j}$ if and only if $p^{2} \mid x_{2 I-j}$.

Proof

(i) Let $p \| x_{j}$ for some $0 \leq j<s$. By a similar argument to that used in the proof of Lemma 6 , to avoid the false conclusion $p^{2} \mid x_{j}$ we require that $i+j-I=I$ has a solution for some $0 \leq i<s$. Consequently $0 \leq 2 I-j<s$ and

$$
p^{2} \mid x_{j}+x_{2 I-j}
$$

Then $p \| x_{j}$ if and only if $p \| x_{2 I-j}$.
(ii) Let j satisfy $0 \leq j<s$ and $0 \leq 2 I-j<s$. Then similar reasoning shows that

$$
p^{2} \mid x_{j}+x_{2 I-j}
$$

from which $p^{2} \mid x_{j}$ if and only if $p^{2} \mid x_{2 I-j}$.

The equation $x_{0} x_{s-1}= \pm t$, obtained by putting $u=s-1$ in (1), is of particular importance. Given a prime p dividing t, we shall often be able to obtain information about the $\left(x_{i}\right)$ from the distribution of powers of p between x_{0} and x_{s-1}.

Definition Let p be a prime and x, y be integers where $x \geq 0$. Let $p^{x} \mid y$ and $p^{x+1} \nmid y$. Then p^{x} is said to strictly divide y, written $p^{x} \| y$.

Lemma 8 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $s>1$ is odd, $x_{i} \neq 0$ for at least one odd i, and $k=1$ or -1 . Let p be a prime such that $p^{\alpha} \| t$ for some integer $\alpha \geq 1$. Then $\alpha \geq 2$ and $p^{\gamma}\left\|x_{0}, p^{\alpha-\gamma}\right\| x_{s-1}$ for some $0<\gamma<\alpha$.

Proof Put $u=s-1$ in (1),

$$
\begin{equation*}
x_{0} x_{s-1}= \pm t . \tag{15}
\end{equation*}
$$

Since $p^{\alpha} \| t$, we then have $p^{\gamma}\left\|x_{0}, p^{\alpha-\gamma}\right\| x_{s-1}$ for some $0 \leq \gamma \leq \alpha$. By Lemma $4, p \mid x_{0}, x_{s-1}$. Therefore $0<\gamma<\alpha$ and, from (15), $p^{2} \mid t$.

Corollary 2 Let A be an $s \times t$ binary array with Barker structure where s, t are odd and $s>1$. Then each prime p dividing t satisfies $p^{2} \mid t$.

Proof Let $\left(x_{i}\right)$ be the row sums of A. From Lemma 1, the $\left(x_{i}: 0 \leq i<s\right)$ are odd integers satisfying equations (1), where $k=1$ or -1 . Let p be a prime dividing t. Then $p^{2} \mid t$ by Lemma 8 .

3 The case $\gamma=1$

In this section we consider solutions to equations (1) for which $p \| x_{0}$ and $p^{\alpha-1} \| x_{s-1}$, where p is a prime. The value of I is then determined by s and α, which in turn gives restrictions on s in terms of α.

Lemma 9 Let $\alpha \geq 2$ and $s,\left(x_{i}: 0 \leq i<s\right)$ be integers and let p be a prime such that

$$
\begin{array}{rll}
p^{\alpha} & \mid & \sum_{i} x_{i} x_{i+u} \text { for all } 0<u<s, \\
p & \| & x_{0} \\
p^{\alpha-1} & \| & x_{s-1} . \tag{18}
\end{array}
$$

Let $0 \leq I<s$ be an integer such that

$$
\begin{equation*}
p \mid x_{i} \text { if and only if } i \neq I . \tag{19}
\end{equation*}
$$

If $\alpha=2$ then $I=(s-1) / 2$. If $\alpha>2$ then for all $1 \leq \beta \leq \alpha-2$,

$$
\begin{align*}
(\beta+1) I & <s-1 \tag{20}\\
p^{\alpha-\beta} & \mid x_{s-1-j} \text { for all } 0 \leq j<\beta I \tag{21}\\
p^{\alpha-\beta-1} & \| x_{s-1-\beta I} \tag{22}
\end{align*}
$$

Proof Since $\alpha \geq 2$, apply Lemma $7(i)$ with $j=0$ to give

$$
\begin{align*}
2 I & <s \tag{23}\\
p & \| x_{2 I} \tag{24}
\end{align*}
$$

We show, by induction on j, that

$$
\begin{equation*}
p^{\alpha-1} \mid x_{s-1-j} \text { for all } 0 \leq j<I \tag{25}
\end{equation*}
$$

The case $j=0$ is given by (18). Assume that for some

$$
\begin{gather*}
1 \leq j<I \tag{26}\\
p^{\alpha-1} \mid x_{s-1-k} \text { for all } 0 \leq k<j \tag{27}
\end{gather*}
$$

Put $u=s-1-j$ in (16),

$$
\begin{equation*}
p^{\alpha} \mid\left(x_{0} x_{s-1-j}+\sum_{i=1}^{j} x_{i} x_{i+s-1-j}\right) \tag{28}
\end{equation*}
$$

Now by (26), $j<I$ and so by (19), $p \mid x_{i}$ for all $1 \leq i \leq j$. Furthermore by (27), $p^{\alpha-1} \mid x_{i+s-1-j}$ for all $1 \leq i \leq j$. Therefore $p^{\alpha} \mid \sum_{i=1}^{j} x_{i} x_{i+s-1-j}$ and so by (28),

$$
p^{\alpha} \mid x_{0} x_{s-1-j}
$$

Using (17) we conclude that $p^{\alpha-1} \mid x_{s-1-j}$, completing the induction on j and proving (25).
Put $u=s-1-I$ in (16),

$$
\begin{equation*}
p^{\alpha} \mid\left(x_{0} x_{s-1-I}+\sum_{i=1}^{I-1} x_{i} x_{i+s-1-I}+x_{I} x_{s-1}\right) . \tag{29}
\end{equation*}
$$

From (19) and (25), $p^{\alpha} \mid \sum_{i=1}^{I-1} x_{i} x_{i+s-1-I}$. Therefore from (29),

$$
\begin{equation*}
p^{\alpha} \mid\left(x_{0} x_{s-1-I}+x_{I} x_{s-1}\right) \tag{30}
\end{equation*}
$$

From (19), $p \nmid x_{I}$ and so by (18), $p^{\alpha-1} \| x_{I} x_{s-1}$. Therefore from (30),

$$
\begin{equation*}
p^{\alpha-1} \| x_{0} x_{s-1-I} \tag{31}
\end{equation*}
$$

In the case $\alpha=2$ we conclude from (17) and (31) that $p \nmid x_{s-1-I}$ and then from (19), $s-1-I=I$ or equivalently $I=(s-1) / 2$, as required. For the rest of the proof take $\alpha>2$. Then (17) and (31) imply that

$$
\begin{equation*}
p^{\alpha-2} \| x_{s-1-I} \tag{32}
\end{equation*}
$$

and, since $\alpha>2$ and $p \nmid x_{I}$, we deduce $s-1-I \neq I$. Combine this with (23) to give

$$
\begin{equation*}
2 I<s-1 \tag{33}
\end{equation*}
$$

We now prove (20)-(22) for all $1 \leq \beta \leq \alpha-2$ by induction on β. The case $\beta=1$ is given by (33), (25) and (32) respectively. Assume that for some

$$
\begin{equation*}
2 \leq \beta \leq \alpha-2 \tag{34}
\end{equation*}
$$

(20) - (22) hold for $\beta-1$, so that

$$
\begin{equation*}
\beta I<s-1 \tag{35}
\end{equation*}
$$

$$
\begin{align*}
p^{\alpha-\beta+1} & \mid \quad x_{s-1-j} \text { for all } 0 \leq j<(\beta-1) I \tag{36}\\
p^{\alpha-\beta} & \| x_{s-1-(\beta-1) I} \tag{37}
\end{align*}
$$

Then to complete the induction on β we must prove the following:

$$
\begin{align*}
(\beta+1) I & <s-1, \tag{38}\\
p^{\alpha-\beta} & \mid x_{s-1-j} \text { for all } 0 \leq j<\beta I, \tag{39}\\
p^{\alpha-\beta-1} & \| x_{s-1-\beta I} . \tag{40}
\end{align*}
$$

We first prove (38). From (36) and (37),

$$
\begin{equation*}
p^{\alpha-\beta} \mid x_{s-1-j} \text { for all } 0 \leq j \leq(\beta-1) I \tag{41}
\end{equation*}
$$

By (34), $\alpha-\beta \geq 2$ and so from (41),

$$
p^{2} \mid x_{s-1-j} \text { for all } 0 \leq j \leq(\beta-1) I
$$

Comparison with (24) shows that

$$
2 I<s-1-(\beta-1) I
$$

which is equivalent to (38).
We next prove (39). From (36), it is sufficient to establish

$$
\begin{equation*}
p^{\alpha-\beta} \mid x_{s-1-j} \text { for all }(\beta-1) I \leq j<\beta I \tag{42}
\end{equation*}
$$

which we prove by induction on j. The case $j=(\beta-1) I$ is given by (37). Assume that for some

$$
\begin{gather*}
(\beta-1) I+1 \leq j<\beta I \tag{43}\\
p^{\alpha-\beta} \mid x_{s-1-k} \text { for all }(\beta-1) I \leq k<j \tag{44}
\end{gather*}
$$

Put $u=s-1-j$ in (16),

$$
\begin{equation*}
p^{\alpha} \mid \sum_{i} x_{i} x_{i+s-1-j} . \tag{45}
\end{equation*}
$$

By (34), $\beta \geq 2$ and so

$$
\begin{equation*}
\alpha-\beta+1 \leq \alpha-1 \tag{46}
\end{equation*}
$$

Therefore from (45),

$$
\begin{equation*}
p^{\alpha-\beta+1} \mid \sum_{i} x_{i} x_{i+s-1-j} . \tag{47}
\end{equation*}
$$

Now by (43), $j \geq(\beta-1) I+1$ and by (34), $\beta \geq 2$, so

$$
\begin{equation*}
j \geq I+1 \tag{48}
\end{equation*}
$$

We can therefore write (47) in the form

$$
\begin{equation*}
p^{\alpha-\beta+1} \mid\left(x_{0} x_{s-1-j}+\sum_{1 \leq i<I, I<i \leq j} x_{i} x_{i+s-1-j}+x_{I} x_{I+s-1-j}\right) . \tag{49}
\end{equation*}
$$

By (41) and (44),

$$
p^{\alpha-\beta} \mid x_{i+s-1-j} \text { for all } 1 \leq i \leq j
$$

Together with (19), this implies

$$
p^{\alpha-\beta+1} \mid \sum_{1 \leq i<I, I<i \leq j} x_{i} x_{i+s-1-j}
$$

and so from (49),

$$
\begin{equation*}
p^{\alpha-\beta+1} \mid\left(x_{0} x_{s-1-j}+x_{I} x_{I+s-1-j}\right) . \tag{50}
\end{equation*}
$$

By (48), $j \geq I+1$ and by (43), $j<\beta I$ and so by (36), $p^{\alpha-\beta+1} \mid x_{I+s-1-j}$. Therefore from (50),

$$
p^{\alpha-\beta+1} \mid x_{0} x_{s-1-j} .
$$

From (17) we conclude that

$$
p^{\alpha-\beta} \mid x_{s-1-j}
$$

completing the induction on j and proving (42), and hence (39).
We lastly prove (40). Put $u=s-1-\beta I$ in (16) and use (46) to show that

$$
\begin{equation*}
p^{\alpha-\beta+1} \mid\left(x_{0} x_{s-1-\beta I}+\sum_{1 \leq i<I, I<i \leq \beta I} x_{i} x_{i+s-1-\beta I}+x_{I} x_{s-1-(\beta-1) I}\right) . \tag{51}
\end{equation*}
$$

By (39), $p^{\alpha-\beta} \mid x_{i+s-1-\beta I}$ for all $1 \leq i \leq \beta I$. Together with (19), this implies

$$
p^{\alpha-\beta+1} \mid \sum_{1 \leq i<I, I<i \leq \beta I} x_{i} x_{i+s-1-\beta I}
$$

and so from (51),

$$
\begin{equation*}
p^{\alpha-\beta+1} \mid\left(x_{0} x_{s-1-\beta I}+x_{I} x_{s-1-(\beta-1) I}\right) \tag{52}
\end{equation*}
$$

From (19), $p \nmid x_{I}$ and so by (37), $p^{\alpha-\beta} \| x_{I} x_{s-1-(\beta-1) I}$. Therefore from (52),

$$
p^{\alpha-\beta} \| x_{0} x_{s-1-\beta I}
$$

We conclude from (17) that

$$
p^{\alpha-\beta-1} \| x_{s-1-\beta I},
$$

which is (40).
This completes the induction on β, proving (20)-(22) for all $1 \leq \beta \leq \alpha-2$.
We now use Lemma 9 to prove the intended result of this section.

Theorem 2 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying (1), where $s>1$ is odd and $k=1$ or -1 . Let p be a prime such that $p^{\alpha} \| t$ for some integer $\alpha \geq 2$, and $p \| x_{0}$. Then
(i) $s \equiv 1 \quad(\bmod \alpha)$
(ii) if x_{i} is odd for all i then $(s-1)(\alpha-2) \equiv 0(\bmod 4 \alpha)$
(iii) $I=(s-1) / \alpha$ is the unique integer such that $p \mid x_{i}$ if and only if $i \neq I$
(iv) for all $2 \leq r \leq \alpha$,

$$
\begin{align*}
& p^{r} \mid \tag{53}\\
& x_{j} \text { for all } j>r I, \tag{54}\\
& p^{r-1} \| x_{r I}
\end{align*}
$$

Proof By Lemma $3(i)$, let I be the unique integer such that $p \mid x_{i}$ if and only if $i \neq I$. Take $u=s-1$ in (1) to give $x_{0} x_{s-1}= \pm t$. Then $p^{\alpha} \| t$ and $p \| x_{0}$ imply

$$
\begin{equation*}
p^{\alpha-1} \| x_{s-1} \tag{55}
\end{equation*}
$$

and we may apply Lemma 9.
We first prove that

$$
\begin{equation*}
I=(s-1) / \alpha \tag{56}
\end{equation*}
$$

If $\alpha=2$ then (56) is given directly by Lemma 9. Suppose that $\alpha>2$. Apply Lemma 9 , taking $\beta=1$ in (20) to give

$$
\begin{equation*}
2 I<s-1 \tag{57}
\end{equation*}
$$

and taking $\beta=\alpha-2$ in (21) and (22) to give

$$
\begin{align*}
p^{2} & \mid \quad x_{s-1-j} \text { for all } 0 \leq j<(\alpha-2) I, \tag{58}\\
p & \| \tag{59}
\end{align*} x_{s-1-(\alpha-2) I} .
$$

From (57) and Lemma 6,

$$
\begin{equation*}
p^{2} \mid x_{j} \text { for all } 2 I<j<s \tag{60}
\end{equation*}
$$

Put $j=0$ in Lemma $7(i)$ to show

$$
\begin{equation*}
p \| x_{2 I} \tag{61}
\end{equation*}
$$

Comparing (58) and (59) with (60) and (61), we conclude that

$$
2 I=s-1-(\alpha-2) I,
$$

which is equivalent to $I=(s-1) / \alpha$. We have therefore proved (56) for $\alpha \geq 2$.
Now I is an integer and so from $(56), s \equiv 1(\bmod \alpha)$. If x_{i} is odd for all i then substitution of (56) in Lemma 5 gives

$$
(s-1) / \alpha \equiv(s-1) / 2 \quad(\bmod 2),
$$

or equivalently $(s-1)(\alpha-2) \equiv 0 \quad(\bmod 4 \alpha)$.
Finally apply Lemma 9 to show that (21) and (22) hold for $\alpha>2$ and for all $1 \leq \beta \leq \alpha-2$. (21) and (22) also hold for $\beta=0$, since then (21) is vacuous and (22) is given by (55). Combining
ranges, (21) and (22) hold for

$$
\alpha \geq 2 \text { and for all } 0 \leq \beta \leq \alpha-2
$$

The substitution $r=\alpha-\beta$, together with (56), then shows that (53) and (54) hold for $\alpha \geq 2$ and for all $2 \leq r \leq \alpha$.

4 Nonexistence results for small α

In this section we use the results of Sections 2 and 3 to obtain nonexistence results for small values of α_{j}, where $t=\prod_{j} p_{j}^{\alpha_{j}}$ for distinct primes p_{j}. We express the nonexistence results in the form of restrictions on s and t.

In each case we state a theorem in terms of integers $\left(x_{i}\right)$ and then a corollary in terms of an $s \times t$ binary array with Barker structure. Each corollary follows directly from the preceding theorem by letting $\left(x_{i}\right)$ be the row sums of the array and using Lemma 1 , as in the proof of Corollary 2.

We already know from Corollary 2 that $\alpha_{j} \geq 2$ for each j. The next case of interest is $\alpha_{j}=2$ for all j. We first explore the case $\alpha=2$ for some prime p.

Lemma 10 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying equations (1), where $s>1$ is odd, $x_{i} \neq 0$ for at least one odd i, and $k=1$ or -1 . Let p be a prime such that

$$
\begin{equation*}
p^{2} \| t \tag{62}
\end{equation*}
$$

Then $p \| x_{0}, x_{s-1}$ and

$$
\begin{array}{r|l}
p & x_{i} \text { if and only if } i \neq(s-1) / 2, \\
p^{2} & \left(x_{j}+x_{s-1-j}\right) \text { for all } 0 \leq j<(s-1) / 2 .
\end{array}
$$

Proof By Lemma 8, $p \| x_{0}, x_{s-1}$. Then by Theorem 2 (iii),

$$
\begin{equation*}
p \mid x_{i} \text { if and only if } i \neq(s-1) / 2 \tag{63}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
p^{2} \mid\left(x_{j}+x_{s-1-j}\right) \text { for all } 0 \leq j<(s-1) / 2 \tag{64}
\end{equation*}
$$

For any $0 \leq j<(s-1) / 2$, put $u=(s-1) / 2-j$ in (1) and use (62) to show that

$$
\begin{equation*}
p^{2} \mid \sum_{i} x_{i} x_{i+(s-1) / 2-j} . \tag{65}
\end{equation*}
$$

From (63), $p^{2} \mid x_{i} x_{i+(s-1) / 2-j}$ unless either $i=(s-1) / 2$ or $i+(s-1) / 2-j=(s-1) / 2$, so from (65), $p^{2} \mid x_{(s-1) / 2}\left(x_{j}+x_{s-1-j}\right)$. By (63), $p \nmid x_{(s-1) / 2}$ and so $p^{2} \mid\left(x_{j}+x_{s-1-j}\right)$, proving (64).

Subject to the condition $s>3$, we now show that $\alpha_{j}>2$ for some j and use Theorem 2 to restrict s when $\alpha_{j}=3$ for some j. If $s=3$, equations (1) have a solution in odd integers (x_{i}) with $k=-1$, namely $t=r^{2}$ for some odd r and $\left(x_{0}, x_{1}, x_{2}\right)=(r, \pm 1,-r)$.

Theorem 3 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying equations (1), where $s>3$ and $t>1$ are odd, $x_{i} \neq 0$ for all i, and $k=1$ or -1 . Then
(i) there exists a prime p such that $p^{3} \mid t$
(ii) if $q^{3} \| t$ for some prime q and x_{i} is odd for all i then $s \equiv 1 \quad(\bmod 12)$

Proof Since $t>1$ we may write $t=\prod_{j} p_{j}^{\alpha_{j}}$, where the $\left(p_{j}\right)$ are distinct primes and $\alpha_{j} \geq 1$ for all j. By Lemma $8, \alpha_{j} \geq 2$ for all j. We seek a contradiction by supposing that $\alpha_{j}=2$ for all j, so that

$$
\begin{equation*}
t=\prod_{j} p_{j}^{2} \tag{66}
\end{equation*}
$$

Applying Lemma 10,

$$
\begin{array}{l|l}
p_{j} & \| \\
x_{0}, x_{s-1} \text { for all } j, \\
p_{j} & \mid \quad x_{i} \text { if and only if } i \neq(s-1) / 2, \text { for all } j, \tag{69}\\
p_{j}^{2} & \mid \\
\left(x_{i}+x_{s-1-i}\right) \text { for all } 0 \leq i<(s-1) / 2, \text { for all } j .
\end{array}
$$

Using (66), we deduce from (68) and (69) that

$$
\begin{equation*}
\sqrt{t} \quad \mid \quad x_{i} \text { for all } i \neq(s-1) / 2 \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
t \mid \quad\left(x_{i}+x_{s-1-i}\right) \text { for all } 0 \leq i<(s-1) / 2 . \tag{71}
\end{equation*}
$$

Put $u=s-1$ in (1) to obtain

$$
\begin{equation*}
x_{0} x_{s-1}= \pm t . \tag{72}
\end{equation*}
$$

Take $i=0, s-1$ in (70) and compare with (72) to show that

$$
\begin{equation*}
x_{0}= \pm x_{s-1} . \tag{73}
\end{equation*}
$$

For any j, take $i=0$ in (69),

$$
\begin{equation*}
p_{j}^{2} \mid\left(x_{0}+x_{s-1}\right) . \tag{74}
\end{equation*}
$$

Suppose, if possible, that $x_{0}=x_{s-1}$. Then from (74), $p_{j}^{2} \mid 2 x_{0}$ and so, since p_{j} is odd, $p_{j}^{2} \mid x_{0}$. This contradicts (67) and so $x_{0} \neq x_{s-1}$. From (73),

$$
\begin{equation*}
x_{0}=-x_{s-1} . \tag{75}
\end{equation*}
$$

Put $u=s-2$ in (1) and substitute from (75),

$$
x_{0}\left(x_{s-2}-x_{1}\right)=0 .
$$

By hypothesis, $x_{0} \neq 0$ and so

$$
\begin{equation*}
x_{1}=x_{s-2} . \tag{76}
\end{equation*}
$$

Take $i=1$ in (71) and substitute from (76) to give $t \mid 2 x_{1}$. Then since t is odd, $t \mid x_{1}$, and so from (76),

$$
\begin{equation*}
t \mid x_{1}, x_{s-2} \tag{77}
\end{equation*}
$$

We now force a contradiction by bounding $\sum_{i} x_{i}^{2}$ from below. By hypothesis, $1<s-2$ and so x_{1}, x_{s-2} are not the same variable. Therefore we may write

$$
\sum_{i} x_{i}^{2}=x_{1}^{2}+x_{s-2}^{2}+x_{(s-1) / 2}^{2}+\sum_{i \neq 1, s-2,(s-1) / 2} x_{i}^{2} .
$$

Since $x_{i} \neq 0$ for all i, from (70) and (77) we then have

$$
\sum_{i} x_{i}^{2} \geq t^{2}+t^{2}+1+(s-3) t
$$

Comparing this bound with the value for the left side obtained by putting $u=0$ in (1),

$$
s t+t-1 \geq 2 t^{2}+1+(s-3) t
$$

which is equivalent to $(t-1)^{2} \leq 0$. This contradicts $t>1$ and so proves (i).
Suppose now that $q^{3} \| t$ for some prime q and x_{i} is odd for all i. From Lemma 8 , either $q \| x_{0}$ or $q \| x_{s-1}$. We may therefore apply Theorem 2 (ii), reversing the order of the $\left(x_{i}\right)$ if necessary, to show that $s-1 \equiv 0 \quad(\bmod 12)$, proving (ii).

Corollary 3 Let A be an $s \times t$ binary array with Barker structure where $s>3$ and $t>1$ are odd. Then there exists a prime p such that $p^{3} \mid t$. If $q^{3} \| t$ for some prime q then $s \equiv 1(\bmod 12)$.

Given that $\alpha_{j} \geq 2$ for all j and $\alpha_{k}>2$ for some k, we next consider the case $\alpha_{k}=3$ for exactly one k and $\alpha_{j}=2$ for all $j \neq k$.

Theorem 4 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying equations (1), where $s>3$ and $t>1$ are odd, x_{i} is odd for all i, and $k=1$ or -1 . Let $t=q^{3} \prod_{j} p_{j}^{\alpha_{j}}$, where $q,\left(p_{j}\right)$ are distinct primes and $\alpha_{j} \geq 1$ for all j. Then $\alpha_{j}>2$ for some j.

Proof By Lemma $8, \alpha_{j} \geq 2$ for all j. Suppose, for a contradiction, that $\alpha_{j}=2$ for all j, so that

$$
\begin{equation*}
t=q^{3} \prod_{j} p_{j}^{2} \tag{78}
\end{equation*}
$$

By Lemma 10,

$$
\begin{equation*}
p_{j} \mid x_{i} \text { for all } i \neq(s-1) / 2, \text { for all } j \tag{79}
\end{equation*}
$$

By Lemma 8 , either $q \| x_{0}$ or $q \| x_{s-1}$. We may assume, by reversing the order of the x_{i} if necessary, that $q \| x_{0}$. Then by Theorem $2(i i i)$ and (iv),

$$
\begin{array}{l|l}
q^{2} & x_{i} \text { for all } 2(s-1) / 3<i \leq s-1 \\
q & x_{i} \text { for all } 0 \leq i \leq 2(s-1) / 3, i \neq(s-1) / 3
\end{array}
$$

Together with (79), this implies that

$$
\begin{aligned}
& q^{2} \prod_{j} p_{j} \mid \\
& q x_{i} \text { for all } 2(s-1) / 3<i \leq s-1 \\
& q \prod_{j} p_{j} \mid x_{i} \text { for all } 0 \leq i \leq 2(s-1) / 3, i \neq(s-1) / 3,(s-1) / 2 \\
& \prod_{j} p_{j} \mid x_{(s-1) / 3}
\end{aligned}
$$

Since $x_{i} \neq 0$ for all i, we can therefore bound $\sum_{i} x_{i}^{2}$ from below,

$$
\sum_{i} x_{i}^{2} \geq \frac{(s-1) q^{4}}{3} \prod_{j} p_{j}^{2}+\left(\frac{2(s-1)}{3}-2\right) q^{2} \prod_{j} p_{j}^{2}+\prod_{j} p_{j}^{2}
$$

Comparing this bound with the value for the left hand side obtained by putting $u=0$ in (1), and making the substitution $\prod_{j} p_{j}^{2}=t / q^{3}$ from (78),

$$
s+1 \geq \frac{(s-1) q}{3}+\frac{2 s-8}{3 q}+\frac{1}{q^{3}} .
$$

Rearrangement gives

$$
s \leq \frac{q^{4}+3 q^{3}+8 q^{2}-3}{q^{2}(q-1)(q-2)}
$$

which can be written as

$$
\begin{equation*}
s \leq 1+3 f(q) \tag{80}
\end{equation*}
$$

where

$$
f(q)=\frac{2 q^{3}+2 q^{2}-1}{q^{2}(q-1)(q-2)}
$$

It is easy to check that

$$
\begin{align*}
f(q)-f(q+1) & =\frac{2 q^{4}+12 q^{3}+18 q^{2}+4 q-1}{(q+1)^{2} q^{2}(q-1)(q-2)} \\
& >0 \text { for all } q \geq 3 \tag{81}
\end{align*}
$$

Now q is an odd prime and so $q \geq 3$. Therefore, from (80) and (81),

$$
\begin{equation*}
s \leq 1+3 f(3)=77 / 6<13 \tag{82}
\end{equation*}
$$

But by Theorem $3(i i), s \equiv 1(\bmod 12)$, and by hypothesis $s>3$. This contradicts (82), completing the proof.

Corollary 4 Let A be an $s \times t$ binary array with Barker structure where $s>3$ and $t>1$ are odd. Let $t=q^{3} \prod_{j} p_{j}^{\alpha_{j}}$, where $q,\left(p_{j}\right)$ are distinct primes and $\alpha_{j} \geq 1$ for all j. Then $\alpha_{j}>2$ for some j.

The final case we shall consider is $\alpha_{j}=2$ or 4 for all j. We first explore the case $\alpha=4$ for some prime p. By Lemma $8, p^{\gamma} \| x_{0}$ where $\gamma=1,2$ or 3 . The values $\gamma=1$ or 3 are covered by Theorem 2, leaving only the value $\gamma=2$ to deal with.

Lemma 11 Let $s,\left(x_{i}: 0 \leq i<s\right)$ be integers and let p be an odd prime such that

$$
\begin{array}{lll}
p^{4} & \mid & \sum_{i} x_{i} x_{i+u} \text { for all } 0<u<s, \\
p^{2} & \| & x_{0} \\
p^{2} & \| & x_{s-1} \tag{85}
\end{array}
$$

Let $0 \leq I<s$ be an integer such that

$$
\begin{equation*}
p \mid x_{i} \text { if and only if } i \neq I . \tag{86}
\end{equation*}
$$

Then

$$
\begin{align*}
I & =(s-1) / 2 \tag{87}\\
p^{2} & \mid x_{j}, x_{s-1-j} \text { for all } 0 \leq j \leq\lfloor(s-3) / 4\rfloor \tag{88}
\end{align*}
$$

If also

$$
\begin{equation*}
x_{0}=-x_{s-1} \tag{89}
\end{equation*}
$$

then

$$
\begin{equation*}
p^{2} \mid x_{j} \text { for all } j \neq(s-1) / 2 \tag{90}
\end{equation*}
$$

Proof We may assume, by reversing the order of the $\left(x_{i}\right)$ if necessary, that

$$
\begin{equation*}
I \leq(s-1) / 2 \tag{91}
\end{equation*}
$$

We show, by induction on j, that

$$
\begin{equation*}
p^{2} \mid x_{j}, x_{s-1-j} \text { for all } 0 \leq j \leq\lfloor(I-1) / 2\rfloor \tag{92}
\end{equation*}
$$

The case $j=0$ is given by (84) and (85). Assume that for some

$$
\begin{gather*}
1 \leq j \leq\lfloor(I-1) / 2\rfloor \tag{93}\\
p^{2} \mid x_{k}, x_{s-1-k} \text { for all } 0 \leq k<j \tag{94}
\end{gather*}
$$

Put $u=s-1-2 j$ in (83), showing that

$$
\begin{equation*}
p^{3} \mid\left(\sum_{i=0}^{j-1} x_{i} x_{i+s-1-2 j}+x_{j} x_{s-1-j}+\sum_{i=j+1}^{2 j} x_{i} x_{i+s-1-2 j}\right) \tag{95}
\end{equation*}
$$

By (94), $p^{2} \mid x_{i}$ for all $0 \leq i \leq j-1$. By (91) and (93), $s-1-2 j>I$ and so by (86), $p \mid x_{i+s-1-2 j}$ for all $0 \leq i \leq j-1$. Therefore $p^{3} \mid \sum_{i=0}^{j-1} x_{i} x_{i+s-1-2 j}$. Similarly $p^{3} \mid \sum_{i=j+1}^{2 j} x_{i} x_{i+s-1-2 j}$. Then from (95),

$$
p^{3} \mid x_{j} x_{s-1-j}
$$

and so

$$
\begin{equation*}
\text { either } p^{2} \mid x_{j} \text { or } p^{2} \mid x_{s-1-j} \tag{96}
\end{equation*}
$$

Now take $u=s-1-j$ in (83),

$$
\begin{equation*}
p^{4} \mid\left(x_{0} x_{s-1-j}+\sum_{i=1}^{j-1} x_{i} x_{i+s-1-j}+x_{j} x_{s-1}\right) \tag{97}
\end{equation*}
$$

By (94), $p^{2} \mid x_{i}, x_{i+s-1-j}$ for all $1 \leq i \leq j-1$ and so $p^{4} \mid \sum_{i=1}^{j-1} x_{i} x_{i+s-1-j}$. Therefore from (97),

$$
p^{4} \mid\left(x_{0} x_{s-1-j}+x_{j} x_{s-1}\right)
$$

Then from (84) and (85),

$$
p^{2} \mid x_{j} \text { if and only if } p^{2} \mid x_{s-1-j}
$$

Therefore, using (96),

$$
p^{2} \mid x_{j}, x_{s-1-j}
$$

completing the induction on j and proving (92).
Put $u=s-1-I$ in (83) to show that

$$
\begin{equation*}
p^{3} \mid\left(\sum_{i=0}^{I-1} x_{i} x_{i+s-1-I}+x_{I} x_{s-1}\right) \tag{98}
\end{equation*}
$$

We next prove (87), considering separately the cases I even and I odd.
Suppose firstly that I is odd, so that (92) and (98) become

$$
\begin{array}{l|l}
p^{2} & \mid x_{j}, x_{s-1-j} \text { for all } 0 \leq j \leq(I-1) / 2, \\
p^{3} & \mid\left(\sum_{i=0}^{(I-1) / 2} x_{i} x_{i+s-1-I}+\sum_{i=(I+1) / 2}^{I-1} x_{i} x_{i+s-1-I}+x_{I} x_{s-1}\right) . \tag{100}
\end{array}
$$

From (99), $p^{2} \mid x_{i+s-1-I}$ for all $(I+1) / 2 \leq i \leq I-1$ and so by (86), $p^{3} \mid \sum_{i=(I+1) / 2}^{I-1} x_{i} x_{i+s-1-I}$. Therefore from (100),

$$
\begin{equation*}
p^{3} \mid\left(\sum_{i=0}^{(I-1) / 2} x_{i} x_{i+s-1-I}+x_{I} x_{s-1}\right) . \tag{101}
\end{equation*}
$$

From (86), $p \nmid x_{I}$ and so by (85), $p^{2} \| x_{I} x_{s-1}$. Therefore from (101),

$$
\begin{equation*}
p^{2} \| \sum_{i=0}^{(I-1) / 2} x_{i} x_{i+s-1-I} . \tag{102}
\end{equation*}
$$

Now from (99), $p^{2} \mid x_{i}$ for all $0 \leq i \leq(I-1) / 2$. Suppose, if possible, that $s-1-I>I$. Then by (86), $p \mid x_{i+s-1-I}$ for all $0 \leq i \leq(I-1) / 2$ and so $p^{3} \mid \sum_{i=0}^{(I-1) / 2} x_{i} x_{i+s-1-I}$, contradicting (102).

Therefore $s-1-I \leq I$, which combines with (91) to give $I=(s-1) / 2$.
Suppose instead that I is even, so that (92) and (98) become

$$
\begin{array}{l|l}
p^{2} & x_{j}, x_{s-1-j} \text { for all } 0 \leq j \leq I / 2-1, \\
p^{3} & \mid \quad\left(\sum_{i=0}^{I / 2-1} x_{i} x_{i+s-1-I}+x_{I / 2} x_{s-1-I / 2}+\sum_{i=I / 2+1}^{I-1} x_{i} x_{i+s-1-I}+x_{I} x_{s-1}\right) . \tag{104}
\end{array}
$$

Suppose, if possible, that

$$
\begin{equation*}
s-1-I>I . \tag{105}
\end{equation*}
$$

From (103), $p^{2} \mid x_{i}$ for all $0 \leq i \leq I / 2-1$ and $p^{2} \mid x_{i+s-1-I}$ for all $I / 2+1 \leq i \leq I-1$. Hence by (86) and (105), $p^{3} \mid\left(\sum_{i=0}^{I / 2-1} x_{i} x_{i+s-1-I}+\sum_{i=I / 2+1}^{I-1} x_{i} x_{i+s-1-I}\right)$, and so from (104),

$$
p^{3} \mid\left(x_{I / 2} x_{s-1-I / 2}+x_{I} x_{s-1}\right) .
$$

As before, $p^{2} \| x_{I} x_{s-1}$ and therefore

$$
p^{2} \| x_{I / 2} x_{s-1-I / 2}
$$

It follows from (86) and (91) that

$$
\begin{array}{lll}
p & \| & x_{I / 2} \\
p & \| & x_{s-1-I / 2} \tag{107}
\end{array}
$$

Apply Lemma 7 (ii) for all $0 \leq j<I / 2$ so that from (103), $p^{2} \mid x_{j}$ for all $3 I / 2<j \leq 2 I$. Apply Lemma 6 to show that $p^{2} \mid x_{j}$ for all $2 I<j<s$. Combine to give

$$
\begin{equation*}
p^{2} \mid x_{j} \text { for all } 3 I / 2<j<s \tag{108}
\end{equation*}
$$

Apply Lemma $7(i)$ with $j=I / 2$ so that from (106),

$$
\begin{equation*}
p \| x_{3 I / 2} \tag{109}
\end{equation*}
$$

Comparing (103) and (107) with (108) and (109), we conclude that

$$
s-1-I / 2=3 I / 2
$$

contradicting (105). Therefore $s-1-I \leq I$, which combines with (91) to give (87).
We therefore have $I=(s-1) / 2$ regardless of whether I is even or odd, and the form (88) is obtained by substituting for I in (92).

Suppose finally that (89) holds. By (87), the form (90) is equivalent to

$$
\begin{equation*}
p^{2} \mid x_{j}, x_{s-1-j} \text { for all } 0 \leq j<I \tag{110}
\end{equation*}
$$

which we prove by induction on j. The case $j=0$ is given by (88). Assume that for some

$$
\begin{gather*}
0<j<I \tag{111}\\
p^{2} \mid x_{k}, x_{s-1-k} \text { for all } 0 \leq k<j \tag{112}
\end{gather*}
$$

Put $u=s-1-j$ in (83),

$$
\begin{equation*}
p^{4} \mid\left(x_{0} x_{s-1-j}+\sum_{i=1}^{j-1} x_{i} x_{i+s-1-j}+x_{j} x_{s-1}\right) . \tag{113}
\end{equation*}
$$

By (112), $p^{4} \mid \sum_{i=1}^{j-1} x_{i} x_{i+s-1-j}$ and then substitution from (89) in (113) gives

$$
p^{4} \mid x_{s-1}\left(x_{j}-x_{s-1-j}\right)
$$

Then from (85),

$$
\begin{equation*}
p^{2} \mid\left(x_{j}-x_{s-1-j}\right) \tag{114}
\end{equation*}
$$

By (111), $I-j>0$ so we may take $u=I-j$ in (83) and use (87) to show that

$$
p^{2} \mid\left(\sum_{i \neq j, I} x_{i} x_{i+I-j}+x_{j} x_{I}+x_{I} x_{s-1-j}\right)
$$

From (86), $p^{2} \mid \sum_{i \neq j, I} x_{i} x_{i+I-j}$ and so

$$
p^{2} \mid x_{I}\left(x_{j}+x_{s-1-j}\right)
$$

But $p \nmid x_{I}$ by (86), and therefore

$$
\begin{equation*}
p^{2} \mid\left(x_{j}+x_{s-1-j}\right) \tag{115}
\end{equation*}
$$

Summing (114) and (115), $p^{2} \mid 2 x_{j}$ and, since p is odd, $p^{2} \mid x_{j}$. Therefore from (115),

$$
p^{2} \mid x_{j}, x_{s-1-j}
$$

completing the induction on j and proving (110) and therefore (90).
We can now treat the case $\alpha_{j}=2$ or 4 for all j.

Theorem 5 Let $s, t,\left(x_{i}: 0 \leq i<s\right)$ be integers satisfying equations (1), where $s>3$ and $t>1$ are odd, $x_{i} \neq 0$ for all i, and $k=1$ or -1 . Let

$$
\begin{equation*}
t=\left(\prod_{j} p_{j}^{2}\right)\left(\prod_{k} q_{k}^{4}\right) \tag{116}
\end{equation*}
$$

where the $\left(p_{j}, q_{k}\right)$ are distinct primes. Then $s \equiv 1(\bmod 4)$.

Proof Suppose, for a contradiction, that

$$
\begin{equation*}
s \equiv 3 \quad(\bmod 4) \tag{117}
\end{equation*}
$$

Applying Lemma 10,

$$
\begin{array}{l|l}
p_{j} & \| \quad x_{0}, x_{s-1} \text { for all } j, \\
p_{j} & \mid x_{i} \text { if and only if } i \neq(s-1) / 2, \text { for all } j \tag{119}
\end{array}
$$

By Lemma 8,

$$
\begin{equation*}
q_{k}^{\gamma_{k}}\left\|x_{0}, \quad q_{k}^{4-\gamma_{k}}\right\| x_{s-1} \text { for all } k \tag{120}
\end{equation*}
$$

where each $\gamma_{k}=1,2$ or 3 . By Theorem $2(i)$, if $\gamma_{k}=1$ or 3 for any k then $s \equiv 1(\bmod 4)$, contradicting (117), and so from (120),

$$
\begin{equation*}
q_{k}^{2} \| x_{0}, x_{s-1} \text { for all } k \tag{121}
\end{equation*}
$$

Then by Lemmas 3 and 11,

$$
\begin{equation*}
q_{k} \mid x_{i} \text { if and only if } i \neq(s-1) / 2, \text { for all } k . \tag{122}
\end{equation*}
$$

Using (116), we deduce from (118) and (121) that

$$
\begin{equation*}
\sqrt{t} \mid x_{0}, x_{s-1} \tag{123}
\end{equation*}
$$

Put $u=s-1$ in (1), giving $x_{0} x_{s-1}= \pm t$. Then (123) implies that

$$
\begin{equation*}
x_{0}= \pm x_{s-1} . \tag{124}
\end{equation*}
$$

Now from (116) and Theorem $3(i)$, there exists some k such that $q_{k}^{4} \mid t$. For any such k, take $u=(s-1) / 2$ in (1) and use (117) to write

$$
\begin{equation*}
q_{k}^{3} \mid\left(x_{0} x_{(s-1) / 2}+\sum_{i=1}^{(s-3) / 4} x_{i} x_{i+(s-1) / 2}+\sum_{i=(s+1) / 4}^{(s-3) / 2} x_{i} x_{i+(s-1) / 2}+x_{(s-1) / 2} x_{s-1}\right) \tag{125}
\end{equation*}
$$

Applying Lemma 11,

$$
q_{k}^{2} \mid x_{i}, x_{s-1-i} \text { for all } 0 \leq i \leq(s-3) / 4
$$

which, together with (122), implies that $q_{k}^{3} \mid\left(\sum_{i=1}^{(s-3) / 4} x_{i} x_{i+(s-1) / 2}+\sum_{i=(s+1) / 4}^{(s-3) / 2} x_{i} x_{i+(s-1) / 2}\right)$.
Therefore from (125),

$$
q_{k}^{3} \mid x_{(s-1) / 2}\left(x_{0}+x_{s-1}\right)
$$

and since, by (122), $q_{k} \nmid x_{(s-1) / 2}$,

$$
\begin{equation*}
q_{k}^{3} \mid\left(x_{0}+x_{s-1}\right) \tag{126}
\end{equation*}
$$

Suppose, if possible, that $x_{0}=x_{s-1}$. Then from (126), $q_{k}^{3} \mid 2 x_{0}$ and so, since q_{k} is odd, $q_{k}^{3} \mid x_{0}$. This contradicts (121) and so $x_{0} \neq x_{s-1}$. From (124),

$$
\begin{equation*}
x_{0}=-x_{s-1} . \tag{127}
\end{equation*}
$$

Now we can apply Lemma 11 to obtain

$$
\begin{equation*}
q_{k}^{2} \mid x_{i} \text { for all } i \neq(s-1) / 2, \text { for all } k \tag{128}
\end{equation*}
$$

Together with (116) and (119), this gives

$$
\begin{equation*}
\sqrt{t} \mid x_{i} \text { for all } i \neq(s-1) / 2 \tag{129}
\end{equation*}
$$

Take $u=s-2$ in (1) and substitute from (127),

$$
x_{0}\left(x_{s-2}-x_{1}\right)=0
$$

Since $x_{0} \neq 0$,

$$
\begin{equation*}
x_{1}=x_{s-2} . \tag{130}
\end{equation*}
$$

Next take $u=(s-3) / 2$ in (1),

$$
\begin{equation*}
t \mid\left(x_{1} x_{(s-1) / 2}+\sum_{i \neq 1,(s-1) / 2} x_{i} x_{i+(s-3) / 2}+x_{(s-1) / 2} x_{s-2}\right) . \tag{131}
\end{equation*}
$$

Now from (116), $p_{j}^{2} \mid t$ for all j and so (119) and (131) imply that $p_{j}^{2} \mid\left(x_{1}+x_{s-2}\right)$ for all j. Then (130) gives $p_{j}^{2} \mid x_{1}, x_{s-2}$ for all j. Similarly $q_{k}^{4} \mid t$ for all k and so (128), (130) and (131) imply that $q_{k}^{4} \mid x_{1}, x_{s-2}$. Combining and using (116),

$$
\begin{equation*}
t \mid x_{1}, x_{s-2} \tag{132}
\end{equation*}
$$

We now proceed as in the proof of Theorem $3(i)$, using (129) and (132) to show that $(t-1)^{2} \leq 0$, contradicting $t>1$. Therefore we conclude that (117) is false and hence $s \equiv 1 \quad(\bmod 4)$.

Corollary 5 Let A be an $s \times t$ binary array with Barker structure where $s>3$ and $t>1$ are odd. Let $t=\prod_{j} p_{j}^{\alpha_{j}}$, where the $\left(p_{j}\right)$ are distinct primes and $\alpha_{j}=2$ or 4 for all j. Then st $\equiv 1$ $(\bmod 4)$.

Proof By Theorem $5, s \equiv 1(\bmod 4)$. Since t is the product of even powers of primes, $t \equiv 1$ $(\bmod 4)$. Therefore $s t \equiv 1 \quad(\bmod 4)$.

This completes our analysis for small values of α_{j}.
The nonexistence results in this paper, for $s \times t$ binary arrays with Barker structure where s, t are odd, are all based on equations (1). Using equations (2) as well as (1) we may interchange s and t in each of our results. In particular we can exclude the case $s=3, t>1$ by Corollary 2 . We conclude this section by summarising the nonexistence results arising from both (1) and (2), although for clarity we mostly do not repeat results with s and t interchanged.

Theorem 6 Let $A=\left(a_{i j}\right)$ be an $s \times t$ binary array with Barker structure where s, t are odd and $s>1$. If $s t \equiv 1 \quad(\bmod 4)$ then $2 s t-1=\left(\sum_{i} \sum_{j} a_{i j}\right)^{2}, s \equiv t \equiv 1 \quad(\bmod 4)$ and $p \equiv 1 \quad(\bmod 4)$ for each prime p dividing s or t. If $t=1$ then $s=3,5,7,11$ or 13 . Otherwise, if $t>1$, write $t=\prod_{j} p_{j}^{\alpha_{j}}$ where the $\left(p_{j}\right)$ are distinct primes and $\alpha_{j} \geq 1$ for all j. Then
(i) $\alpha_{j} \geq 2$ for all j
(ii) $\alpha_{k}>2$ for some k
(iii) if $\alpha_{k}=3$ for some k then $s \equiv 1(\bmod 12)$
(iv) if $\alpha_{k}=3$ for some k then $\alpha_{j}>2$ for some $j \neq k$
(v) if $\alpha_{j}=2$ or 4 for all j then st $\equiv 1 \quad(\bmod 4)$.

5 Comments

The smallest odd value of $s t>13$ for which the nonexistence of an $s \times t$ binary array with Barker structure is not determined by Theorem 6 occurs at $\{s, t\}=\left\{3^{5}, 3^{6}\right\}$. The existence of such an array implies the existence of a (177147, 88573, 44286)-difference set in $\mathbb{Z}_{243} \times \mathbb{Z}_{729}[2]$.

In our opinion, the apparent scarcity of solutions to the necessary equations, both in the row and column sums, provides good reason to doubt the existence of an $s \times t$ binary array with Barker structure where $s t>13$ is odd.

6 Acknowledgements

This work was carried out while Jonathan Jedwab was studying for a Mathematics PhD at Royal Holloway and Bedford New College, University of London. He is very grateful to Fred Piper, Chris Mitchell and Peter Wild of RHBNC for their invaluable assistance and encouragement throughout his research.

References

[1] S. ALQUADDOOMI AND R.A. SCHOLTZ, On the nonexistence of Barker arrays and related matters, IEEE Trans. Inform. Theory, 35 (1989), pp. 1048-1057.
[2] J. JEDWAB, Barker arrays I - even number of elements, SIAM J. Discrete Math., to appear.
[3] R. TURYN AND J. STORER, On binary sequences, Proc. Amer. Math. Soc., 12 (1961), pp. 394-399.

